Class 3 in-class exercise solution#

# boilerplate for allowing PDF export
import plotly.io as pio

pio.renderers.default = "notebook+pdf"

Step 0#

import pandas as pd

requests_by_cd = pd.read_csv(
    "https://storage.googleapis.com/python-public-policy/data/311_community_districts.csv.zip"
)
requests_by_cd.head()
borocd Borough CD Name 2010 Population count_of_311_requests request_per_capita
0 112 Manhattan Washington Heights, Inwood 190020 81403 0.428392
1 405 Queens Ridgewood, Glendale, Maspeth 169190 71506 0.422637
2 412 Queens Jamaica, St. Albans, Hollis 225919 70362 0.311448
3 301 Brooklyn Williamsburg, Greenpoint 173083 68104 0.393476
4 303 Brooklyn Bedford Stuyvesant 152985 66360 0.433768

Step 1#

import plotly.express as px

fig = px.histogram(
    requests_by_cd,
    x="request_per_capita",
    title="Number of Community Districts with different volumes of requests per capita",
)
fig.show()